

Определение магнитного поля Земли

Общая информация

Описание

Рис.1: Экспериментальная установка

Магнитное поле Земли защищает планету от космического излучения. Знание его точной формы позволяет калибровать измерительные инструменты, которые используются для измерения других магнитных полей.

Дополнительная информация (1/2)

Предварительные

знания

Принцип

Предварительные знания, необходимые для этого эксперимента, содержатся в разделе "Теория".

Постоянное магнитное поле, величина и направление которого известны, накладывается на неизвестное магнитное поле Земли. Магнитное поле Земли может быть рассчитано по величине и направлению результирующей плотности магнитного потока.

Дополнительная информация (2/2)

Обучение

цель

Задачи

Цель этого эксперимента - измерить магнитное поле Земли.

- 1. Магнитный поток пары катушек Гельмгольца должен быть определен и построен графически в зависимости от тока катушки. Коэффициент калибровки системы Гельмгольца рассчитывается по наклону линии.
- 2. Горизонтальная составляющая магнитного поля Земли определяется путем наложения поля Гельмгольца.
- 3. Для расчета вертикальной составляющей магнитного поля Земли необходимо определить угол наклона.

Теория (1/2)

Для катушек без тока магнитная стрелка магнитометра совмещается с горизонтальной составляющей hB_E (направление "север/юг") магнитного поля Земли. Если дополнительное магнитное поле hB_H накладывается на эту составляющую через катушки Гельмгольца, то стрелка будет повернута на угол α и будет указывать в направлении результирующей hB_H . На рис. ЗА представлены компоненты поля для общего случая $\varphi \neq 90^\circ$. Компоненты, изображенные пунктирной линией, представляют собой результирующие условия обратной полярности тока катушки. Используя теорему синусов, получаем:

$$rac{\sinlpha}{\sineta}=rac{\sinlpha}{\sin(arphi-lpha)}=rac{{}^{
m h}B_{
m H}}{{}^{
m h}B_{
m E}}$$
 (1)

Теория (2/2)

В частном случае, когда ось катушки перпендикулярна направлению "север/юг" $\varphi=90^\circ$, применяется следующее:

$$^{\mathrm{h}}B_{\mathrm{E}}={^{\mathrm{h}}B_{\mathrm{H}}\cot\alpha}$$
 (2)

С помощью калибровки

$${}^{\mathrm{h}}B_{\mathrm{H}}=I_{\mathrm{H}}\cdot K$$
 (3)

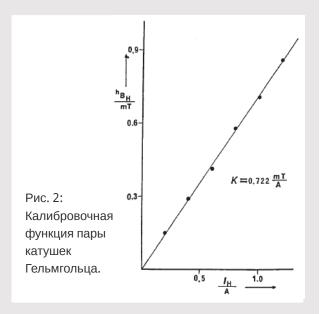
из (1) получаем:

$$^{ ext{h}}B_{ ext{E}}\cdot\left(rac{\sinlpha}{\sineta}
ight)=I_{ ext{H}}\cdot K$$
 (4)

Оборудование

PH/WE excellence in science

Позиция	Материал	Пункт No.	Количество
1	<u>Катушки Гельмгольца, 1 пара</u>	06960-05	1
2	<u>Источник питания, универсальны DC: 018 V,05 A / AC:2/15 V,5 A</u>	13504-93	1
3	<u>Реостат, 100 Ом , 1,8 А</u>	06114-02	1
4	<u>Тесламетр, цифровой</u>	13610-93	1
5	<u>Датчик Холла, аксиальный</u>	13610-01	1
6	<u>Цифровой мультиметр, с NiCr-Ni термопарой</u>	07122-00	1
7	<u>Магнитометр</u>	06355-00	1
8	<u>Цилиндрическая опора</u>	02004-00	1
9	<u>Прямоугольный зажим</u>	02054-00	1
10	<u>Штативный стержень, нерж. ст., I=250 мм, d = 10 mm</u>	02031-00	1
11	<u>Трубка-стойка с зажимом</u>	02060-00	1
12	Соединительный проводник, 1000 мм, красный	07363-01	1
13	Соединительный проводник, 1000 мм, синий	07363-04	4



Подготовка и выполнение работы

Подготовка

Составляющие экспериментальной установки представлены на рис. 1. Катушки Гельмгольца в комплекте с установленными держателями прокладки соединены последовательно (соединение одинаково пронумерованных соединений) и связаны с генератором постоянного тока с помощью реостата и мультиметром, используемым в качестве амперметра. Зонд Холла должен быть закреплен на штативном стержне так, чтобы основание цилиндра было направлено внутрь к оси катушки в центре устройства Гельмгольца. При таком расположении горизонтальная составляющая вектора магнитной индукции hB_H пары катушек определяется как функция тока катушки I_H . Калибровочный коэффициент $K={}^{
m h}B_{
m H}/I_{
m H}$ определяется с помощью соответствующего графика (см. рис. 2).

Выполнение работы (1/2)

Примечание: Перед началом измерения необходимо точно установить положение нулевой точки тесламетра.

Магнитометр (с выровненным градуированным кругом) помещают между катушками с помощью цилиндрического основания и штатива, таким образом, чтобы центр градуированного круга приблизительно совпадал с центром пары катушек.

Сначала на градуированном круге для катушек без тока отмечается направление "север/юг". Для того чтобы зафиксировать направление "север/юг" магнитной стрелки, ее следует несколько раз слегка отклонить от положения покоя. Возможное сопротивление трению можно уменьшить, осторожно постучав по инструменту. Для того чтобы определить горизонтальную составляющую hB_E магнитного поля Земли, угол отклонения lpha магнитной стрелки измеряется из ее положения покоя как функция малых токов катушки. Если полярность тока в катушке меняется, то серию измерений необходимо повторить. При определении точного угла необходимо учитывать показания обоих кончиков стрелки.

Выполнение работы (2/2)

PHYWE excellence in science

Угол φ (рис. 3A) между направлением "север/юг" и осью пары катушек достигается за счет максимального отклонения стрелки при коротком замыкании резистора, амперметр отключают, а ток катушки установливают приблизительно на 4 A.

В заключение, и для бестоковых катушек, градуированный круг магнитометра поворачивается в вертикальную плоскость, так что магнитная стрелка теперь показывает угол наклона ϑ_1 . Убедитесь, что ось вращения соответствует направлению "север/юг". Для того чтобы проверить ϑ_2 магнитометр поворачивается на 180° и, таким образом, перемещают в вертикальной плоскости.

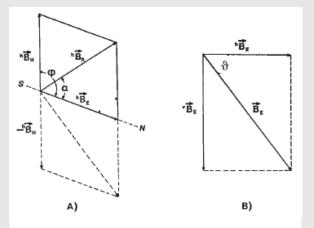


Рис. 3: Векторная диаграмма плотности магнитного потока: A) горизонтальная плоскость, B) вертикальная плоскость.

Оценка

Результаты (1/2)

Если $I_H\cdot K$ представляется как функция от $\frac{\sin\alpha}{\sin\beta}$ (рис. 4), горизонтальная составляющая магнитного поля Земли получается из наклона.

$$^{
m h}B_{
m E}=19.2$$
 мкТл

Из рис. З В следует, что вертикальная составляющая ${}^{\mathrm{v}}B_{\mathrm{E}}$ и измеренный угол наклона.

$$artheta=rac{1}{2}(artheta_1+artheta_2)=rac{1}{2}(67^\circ+68^\circ)=67.5^\circ$$

$$^{\mathrm{v}}B_{\mathrm{E}}={}^{\mathrm{h}}B_{\mathrm{E}} anartheta=46.3\,$$
мкТл (5)

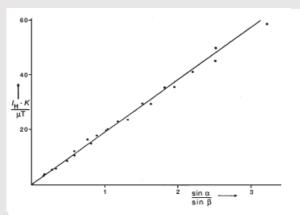


Рис. 4: Линейная функция в соответствии с (4) для определения горизонтальной составляющей hB_E магнитного поля Земли.

Результаты (2/2)

Общая плотность потока B_E рассчитывается как

$$|B_{
m E}| = \sqrt{({}^{
m v}B_{
m E})^2 + ({}^{
m h}B_{
m E})^2} = 50.2$$
 мкТл(6)

Справочные значения для Геттингена, Германия:

$$^{
m h}B_{
m E}=19.06\,$$
мк ${
m T}$ л

$$^{\mathrm{v}}B_{\mathrm{E}}=43.96\,$$
мк T л

$$artheta=66.57^\circ$$

$$B_{
m E}=47.91\,{
m mkT}$$
л

Примечание

Приемлемые результаты измерений можно получить только в том случае, если исключить влияние возмущающих магнитных полей (например: куски железа вблизи места измерения).