

Количественный рентгенофлуоресцентный анализ легированных материалов

Общая информация

Описание

Большинство применений рентгеновских лучей основано на их способности проходить сквозь вещество. Поскольку эта способность зависит от плотности вещества, становится возможным получение изображений внутренних частей объектов и даже людей. Это находит широкое применение в таких областях, как медицина или безопасность.

Дополнительная информация (1/2)

Предварительные

знания

Принцип

Предварительные знания, необходимые для этого эксперимента, приведены в разделе "Теория".

Различные легированные материалы подвергаются полихроматическому рентгеновскому излучению. Энергия образующегося флуоресцентного излучения анализируется с помощью полупроводникового детектора и многоканального анализатора. Определяется энергия соответствующих характеристических линий рентгеновской флуоресценции. Для определения концентрации компонентов сплава, интенсивность соответствующих сигналов флуоресценции сравнивается с интенсивностью сигналов чистых элементов.

Дополнительная информация (2/2)

Обучение

Задачи

PHYWE excellence in science

Цель этого эксперимента - исследовать спектры флуоресцентного излучения.

- 1. Откалибруйте детектор энергии с помощью характерного излучения вольфрамовой рентгеновской трубки.
- 2. Запишите спектры флуоресценции легированных образцов.
- 3. Запишите спектры флуоресценции чистых металлов.
- 4. Определите значения энергии соответствующих линий флуоресценции.
- 5. Вычислите уровни концентрации компонентов сплава.

Теория (1/2)

Чтобы определить концентрацию элементов в образце с помощью рентгенофлуоресцентного анализа, сначала необходимо провести качественный анализ. При присвоении линий флуоресценции необходимо учитывать, что релаксации, которые следуют за процессом первичной ионизации, могут иметь место только в том случае, если они удовлетворяют квантово-механическим правилам отбора $\Delta \mathbf{j} = 0, \pm 1$ и $\Delta \mathbf{l} = \pm 1$ (j = полный угловой момент, l = орбитальный угловой момент). Кроме того, следует отметить, что каждый элемент имеет группы рентгеновских линий, которые имеют определенное соотношение интенсивности.

Если, например, рассматривать конкретную линию как K_{α} -линию элемента, то должна быть возможность обнаружить соответствующую K_{β} -линию в правильном соотношении интенсивности при условии, что она не перекрывается линией другого элемента. Когда линии присвоены элементам, интенсивность линии позволяет сделать выводы о концентрации элементов.

Теория (2/2)

Как правило, матричные эффекты (см. Приложение) затрудняют непосредственное определение концентрации.

Вот почему в практических приложениях количественный анализ выполняется путем сравнения с функциями калибровки, хранящимися в компьютере и созданными с использованием сертифицированных эталонных образцов.

Если матричные эффекты отсутствуют, концентрация c_a элемента ав образце может быть определена на основе соотношения между интенсивностью I_a линии элемента и интенсивностью I_ϵ той же линии чистого элемента, т.е:

$$c_{\rm a}=rac{I_{\rm a}}{I_{\epsilon}}$$
(1)

В первом приближении интенсивность линии флуоресценции может быть определена на основе ее пикового значения.

Robert-Bosch-Breite 10 Tel.: 0551 604 - 0 37079 Göttingen Fax: 0551 604 - 107 4/13

Оборудование

Позиция	Материал	Пункт No.	Количество
1	XR 4.0 X-ray Базовая рентгеновская установка, 35 кВ	09057-99	1
2	XR 4.0 X-ray Гониометр для рентгеновской установки, 35 кВ	09057-10	1
3	XR4 Съёмная рентгеновская трубка Plug-in Cu tube	09057-51	1
4	XR 4.0 X-ray Рентгеновский анализ материалов, расширение	09165-88	1

Подготовка и выполнение работы

Подготовка (1/2)

- Навинтите переходное кольцо на входную трубку детектора энергии и подключите сигнальный и питающий кабели к соответствующим портам детектора с помощью угловых штекеров.
- Подключите сигнальный и питающий кабели к соответствующим портам в экспериментальной камере рентгеновской установки. На рис.1 порт для сигнального кабеля обозначен красным цветом, а порт для кабеля питания - зеленым. Подключите внешние порты X RED рентгеновской установки (см. рис. 2) к многоканальному анализатору (МСА). Подключите сигнальный кабель к порту "Вход", а питающий кабель - к порту "Детектор энергии рентгеновского излучения" МСА.

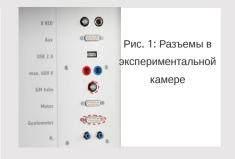


Рис. 2: Подключение многоканального анализатора

Подготовка (2/2)

- Закрепите детектор энергии в держателе поворотного кронштейна гониометра. Проложите два кабеля достаточной длины, чтобы гониометр мог свободно поворачиваться во всем диапазоне
- Соедините многоканальный анализатор и компьютер с помощью USBкабеля.
- Вставьте трубку с отверстием 2 мм.
- Переместите блок гониометра и детектор в соответствующие крайние положения слева. Приведите детектор в положение 90° в режиме сопряжения 1:2 (рис. 3).

Рис. 3: Установка гониометра

Выполнение работы (1/5)

- Переместите блок гониометра и детектор в соответствующие крайние положения справа.
- Вставьте тркбку с отверстием 1 мм в выходную трубку рентгеновской трубки.
- Включите рентгеновскую установку и заблокируйте дверцу, переведите детектор в положение 0°. Затем сместите детектор на несколько десятых градуса от нулевого положения, чтобы уменьшить общую скорость.
- Рабочие характеристики вольфрамовой или медной рентгеновской трубки: Выберите анодное напряжение U_A = 25 кВ и анодный ток I_A = 0,02 мА и подтвердите эти значения нажатием кнопки "Enter".
- Включите рентгеновское излучение.

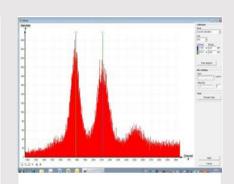


Рис. 4: калибровка многоканального анализатора

7/13

Выполнение работы (2/5)

- В программе MEASURE выберите "Многоканальный анализатор" в разделе "Датчик". Затем выберите "Настройки и калибровка". После нажатия кнопки "Калибровка" можно измерить спектр. Скорость счета должна быть < 300 имп/с. Настройки калибровки по энергии: калибровка по 2 точкам, единица измерения = кэВ, усиление = 2 установите смещение так, чтобы подавить низкоэнергетические сигналы шума (обычно достаточно нескольких процентов), см. рис. 4.
- Время измерения: 5 минут. Используйте таймер рентгеновской установки.
- \circ Сделайте две цветные калибровочные линии совпадающими с центрами линий двух характеристических рентгеновских линий. Соответствующие значения энергии (см., например, P2544705) $\mathrm{E}(\mathrm{L}_3\mathrm{M}_5/\mathrm{L}_3\mathrm{M}_4)$ = 8,41кэВ и $\mathrm{E}(\mathrm{L}_2\mathrm{N}_4)$ = 9,69 кэВ вводятся в соответствующие поля, в зависимости от цвета. (Примечание: Поскольку разделение линий $\mathrm{L}_3\mathrm{M}_4$ и $\mathrm{L}_3\mathrm{M}_5$ не представляется возможным, в качестве энергии линии вводится среднее значение обеих линий).
- Назовите и сохраните калибровку.

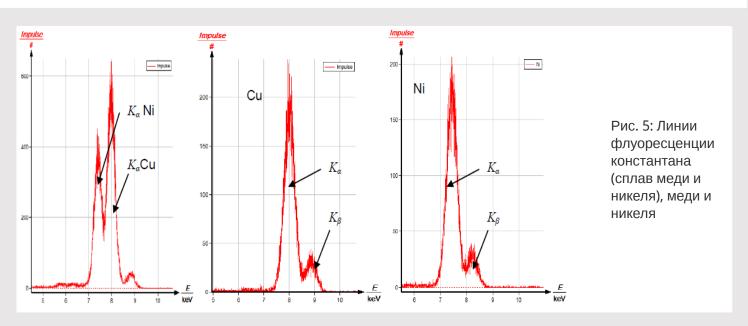
Выполнение работы (3/5)

Запись спектра

- Вставьте трубку с отверстием 5 мм.
- Переместите блок гониометра и детектор в соответствующие крайние положения слева. Приведите детектор в положение 90° в режиме сопряжения 1:2.
- Вставьте металлический образец с помощью универсального держателя кристаллов (образец находится под углом 45°).
- \circ Рабочие характеристики молибденовой или меднной рентгеновской трубки: Выберите анодное напряжение U_A = 35 кВ и анодный ток такой, что скорость счета составляет \leq 200 имп/с.
- Время измерения: 10 минут (используйте таймер рентгеновской установки).

Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Выполнение работы (4/5)



Оценка измерительных кривых

- Чтобы определить энергию линии, переключитесь с отображения полос на отображение кривых. Для этого нажмите "Параметры отображения", а затем "Интерполяция и прямые линии".
- Увеличить соответствующий участок линии с помощью функции масштабирования 🔍
- Затем выберите участок кривой с помощью [+ Откройте окно "Подгонка функции". Затем выберите "Масштабированное нормальное распределение" и подтвердите.
- Найдите центр линии нормального распределения с помощью функции "Анализ пиков" և или определите его с помощью функции "Обзор" # (см. рис. 5).

Выполнение работы (5/5)

Robert-Bosch-Breite 10

37079 Göttingen

Оценка

Оценка (1/4)

PHYWE excellence in science

На рис. 5 показан спектр флуоресценции образца константана и соответствующие спектры чистых элементов.

На основании K_{α} линий на рис. 6 показан метод оценки этих кривых. Соответствующие значения приведены в таблице 1. Указанные в таблице номера импульсов очищены от интенсивности фона (около 5 импульсов).

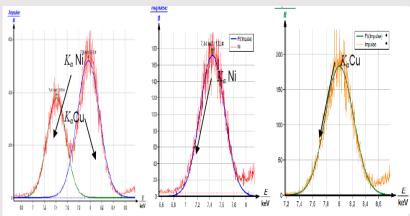


Рис. 6: Метод оценки спектра: K_{α} -линии константана, меди и никеля с масштабированным нормальным распределением

Оценка (2/4)

PHYWE excellence in science

Столбец F в приведенной выше таблице включает экспериментальные значения концентрации образца константана. Согласно этим значениям образец состоит из 57,8 % (\approx 55%) меди и 42,2 % (\approx 45%) никеля. (Данные предоставлены производителем сопротивления сплава константан: $Cu_{55}Ni_{45}$)

Чистый элемент			Образец		
A	В	С	D	E	F
	линия	$\it E$, кэВ	$I_arepsilon$, имп.	I_a , имп.	Ca .,%
Cu	K_{α}	8,0	183	518	57,8
Ni	K_{α}	7,4	172	378	42,2

Таблица 1: Образец константана

Оценка (3/4)

Оценка образца из латуни

На рисунке 8 показаны спектры флуоресценции образца латуни $(\mathrm{CuZn_{39}Pb_3})$ и соответствующих чистых элементов. И снова для определения уровней концентрации используются только α -линии. Соответствующая оценка с учетом интенсивности фона представлена в таблице 2.

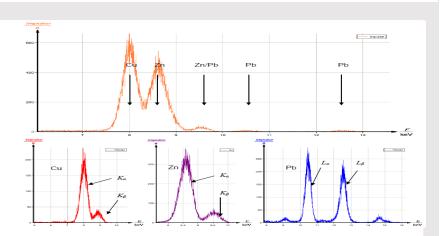


Рис. 7: Линии флуоресценции латуни ($\mathrm{CuZn_{39}Pb_3}$), и соответствующих чистых элементов меди, цинка и свинца.

Оценка (4/4)

Чистый элемент		Образец			
A	В	С	D	E	F
	Линия	E , кэ ${f B}$	I_{e} , имп.	I_{a} . ${}_{ИМП}$.	Ca, %
Cu	K_{α}	8,0	974	546	56,0
Zn	K_{α}	8,6	1037	420	40,5
Pb	L_{α}	10,5	235	6	2,6

Таблица 2: Образец латуни ($CuZn_{39}Pb_3$)

Приложение

Примечание

Обычно интенсивность флуоресценции элемента A с одинаковой концентрацией в сплавах с различными составляющими сплава не одинакова. Это показывает, что интенсивность флуоресценции элемента зависит не только от концентрации, но и от комбинации элементов, образующих так называемую матрицу анализируемого элемента.

Если энергия флуоресцентного излучения элемента A достаточно высока, чтобы стимулировать флуоресцентное излучение в элементе B, то излучение, исходящее от B, зависит не только от первичной интенсивности, но и от концентрации элемента A. И наоборот, элемент A может поглощать излучение элемента B. Эти дополнительные эффекты известны как матричные эффекты.

13/13